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a b s t r a c t

Artificial neural networks (ANNs) are computer based systems that are designed to simulate the learning
process of neurons in the human brain. ANNs have been attracting great interest during the last decade
as predictive models and pattern recognition. Artificial neural networks possess the ability to “learn”
from a set of experimental data (e.g. processing conditions and corresponding responses) without actual
knowledge of the physical and chemical laws that govern the system. Therefore, ANNs application in data
treatment is especially important where systems present nonlinearities and complex behavior. In recent
years “advanced oxidation processes” (AOPs), including homogeneous and heterogeneous nanocatalytic
processes, have been proposed to oxidize quickly and non-selectively a broad range of water pollutants.
Due to the complexity of reactions in AOPs, the effect of different operational parameters involved are
very difficult to determine, leading to uncertainties in the design and scale-up of chemical reactors of
hotocatalysis

enton
hoto-Fenton
lectro-oxidation

industrial interest. It is evident that this problem can not be solved by simple linear multivariate cor-
relation. Artificial neural networks are a promising alternative modeling technique. This paper briefly
describes the application of artificial neural networks for modeling of water and wastewater treatment
using various homogeneous and heterogeneous nanocatalytic processes. Examples of early applications
of ANNs in modeling and simulation of photocatalytic, photooxidative and electrochemical treatment

processes are reviewed.

© 2010 Elsevier B.V. All rights reserved.
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. Introduction

In the last decades great strides have been made in neural net-
ork technology. This breakthrough has led to increasing research

n a wide variety of scientific applications [1,2]. The interest to
NNs is reflected in the number of scientists, the amounts of fund-

ng, the number of large conferences, and the number of journals
ssociated with neural networks.

Neural networks have been trained to perform complex func-
ions in various fields of application including pattern recognition,
dentification, classification, speech, vision, and control systems. In
his document, we have briefly described the application of artificial
eural networks for modeling of different water and wastewater
dvanced treatment processes.

Conventional water and wastewater treatment processes have
een long established in removing many chemical and microbial
ontaminants of concern to public health and the environment.
owever, the effectiveness of these processes has become lim-

ted over the last two decades because of the following three new
hallenges [3,4]:

Increased knowledge about the consequences of water pollution
and the public desire for better quality water;
Diminishing water resources and rapid population growth and
industrial development. The reuse of municipal and industrial
wastewaters and the recovery of potential pollutants used in
industrial processes become crucially important;
Advances in the manufacturing industry and the growing market
associated with advanced treatment processes have resulted in
substantial improvements to the versatility and costs of these
processes at the industrial scale.

To resolve these new challenges and better use of econom-
cal resources, various AOPs have been proposed, tested, and
pplied to meet both current and anticipated treatment require-
ents. Advanced treatment technologies have been demonstrated

o remove various potentially harmful compounds that could not be
ffectively removed by conventional treatment processes. Among
hem, homogeneous and heterogeneous nanocatalytic processes
ave been proven to successfully remove a wide range of challeng-

ng contaminants and hold great promise in water and wastewater
reatment.

This review starts with a chapter in which the topology of
rtificial neural networks is discussed. In chapter 3, training, val-
dation and test of the neural networks are described. Chapters

to 7 discuss the early applications of ANNs in modeling and
imulation of various homogeneous and heterogeneous nanocat-
lytic processes including photocatalysis, Fenton, photo-Fenton
nd Electro-oxidation processes.

. Artificial neural networks structure

The success in obtaining a reliable and robust network depends
trongly on the choice of process variables involved as well as the
vailable set of data and the domain used for training purposes [5].

n this chapter, we are to describe the topology of artificial neu-
al networks including transfer functions, learning processes and
raining algorithms.

Each network consists of artificial neurons grouped into lay-
rs and put in relation to each other by parallel connections. The
Fig. 1. A typical feed-forward neural network with a single hidden layer containing
14 neurons.

strength of these interconnections is determined by the weight
associated with them. For every ANN, the first layer constitutes
the input layer (independent variables) and last one forms the out-
put layer (dependent variables). One or more neuron layers called
hidden layers can be located between them.

The hidden layers act like feature detectors and in theory, there
can be more than one hidden layer. Universal approximation the-
ory, however, suggests that a network with a single hidden layer
with a sufficiently large number of neurons can interpret any
input–output structure [5–8]. The number of neurons in the hidden
layer is determined by the desired accuracy in the neural predic-
tions. Hence, it may be considered as a parameter for the neural net
design. In the feed-forward neural net, all the neurons of a partic-
ular layer are connected to all the neurons of the layer next to it.
The input layer of neurons acts like a distributor and the input to
this layer is directly transmitted to the hidden layer. The inputs to
hidden and output layers are calculated by performing a weighted
summation of all the inputs received from the preceding layer. The
weighted sum of the inputs are transferred to the hidden neurons,
where it is transformed using an activation function. The output
of hidden neurons in turn, acts as inputs to output neurons where
it undergoes another transformation. Fig. 1 shows a typical feed-
forward neural network with a single hidden layer containing 14
neurons [9].

The topology of an artificial neural network is then determined
by number of its layers, number of nodes in each layer and the
nature of transfer functions. Optimization of ANN topology is prob-
ably the most important step in the development of a model.

2.1. Transfer functions
Different transfer functions can be used as the neuron activation
function. Table 1 shows the characteristics of some of these func-
tions. The graph in the square to the right of each transfer function
represents the symbol of each transfer function.
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Table 1
Characteristics of different transfer functions.

Function name Input/output Icon Acronym
(Matlab Name)

Hard-limit a = 0 if n < 0 hardlim
a = 1 if n ≥ 0

Symmetric hard-limit a = −1 if n < 0 hardlims
a = 1 if n ≥ 0

Linear a = n purelim

Saturated linear a = 0 if n < 0 satlin
a = n if 0 ≤ n ≤ 1
a = 1 if n > 1

Symmetric saturated linear a = −1 if n < −1 satlins
a = n if −1 ≤ n ≤ 1
a = 1 if n > 1

Positive linear a = 0 if n < 0 poslin
a = n if n ≥ 0

Sigmoid a = 1
1+exp−n logsig

Tangent hyperbolic a = en−e−n

en+e−n tansig
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state, the major task of a network is then to model this state as best
Competitive a = 1 if n is maximum compet
a = 0 otherwise

Three commonly used functions are “hard limit”, “linear” and
sigmoid” [10]. The hard-limit transfer function limits the output
f the neuron to either 0, if the net input argument n is less than 0,
r 1, if n is greater than or equal to 0. More specifically, a negative
nput does not pass the threshold, then the function returns the
alue 0 (0 can be interpreted as false), then a non-negative input
xceeds the threshold, and the function returns 1 (true).

The other important transfer function is called linear. This func-
ion is very simple; it directly transfers its input to its output:

= n (1)

In this case, the output of the neuron corresponds to its level of
ctivation and the zero output occurs when:

Tp = b (2)

The sigmoid transfer function takes the input, which can have
ny value between plus and minus infinity, and squashes the output
nto the range 0 to 1.

Sigmoid transfer function is the most widely used transfer func-
ion for the input and hidden layers and given by Eq. (3).

= 1
1 + e−n

(3)

The sigmoid function is very non-linear because there is a dis-

ontinuity when wTp = b. This transfer function is commonly used
n back propagation networks, because it is differentiable. Finally,
t must be noted that the “hyperbolic tangent” is a symmetrical
ersion of the sigmoid function [10].
Fig. 2. Supervised learning scheme.

2.2. Learning processes

Among the desirable properties of a neural network, the abil-
ity of learning from its environment to improve its performance
is surely the most important. But what then is learning? Unfortu-
nately, there is no general, universally accepted definition, as this
term is associated with many different concepts that depend on
each person’s perspective. Learning is a dynamic and iterative pro-
cess that modifies the parameters of a network. This process is a
respond to the signals that the network receives from its environ-
ment [11,12].

In most topologies, learning results to a change of synaptic effi-
ciency, or in other words, to a change in the amount of the weights
connecting the neurons of one layer to another. There are three
basic types of learning including supervised, reinforcement and
unsupervised learning. Supervised learning is characterized by the
presence of a “professor” who has a deep knowledge of the envi-
ronment in which the neural network evolves. Supervised learning
is illustrated schematically in Fig. 2.

The environment is unknown to the network. This produces an
input p(t) that is routed to both the professor and the network.
Thanks to its intrinsic knowledge, the professor produces a desired
output d(t) for this input. It is assumed that this response is optimal.
It is then compared (by subtraction) with the output of the network
to produce an error signal e(t) which will be re-injected into the
network to change its behavior through an iterative process. This
iteration eventually allows the network to simulate the response
of the professor [13].

The reinforcement learning overcomes some limitations of
supervised learning. It is a kind of supervised learning, but with a
hint of satisfaction instead of a scalar error signal vector. In practice,
the use of reinforcement learning is complex to implement. But, it is
important to understand the difference between this type of learn-
ing and supervised one. Supervised learning has an error signal that
not only calculates an index of satisfaction, but also estimates the
local gradient indicating a direction for the adaptation of synaptic
weights. This information is provided by the professor who makes
all the difference. In reinforcement learning, the absence of error
signal makes the calculation of this gradient impossible. To esti-
mate the gradient, the network is forced to attempt actions and
observe the outcome, eventually infer a direction of change for the
synaptic weights. To do this, it implements a process of trial/error
while delaying the reward offered by the satisfaction index [14].

Unsupervised or self-organized learning is characterized by the
complete absence of professor, neither a signal error, as in the case
of supervised, nor an index of satisfaction, as in the case for rein-
forcement. Therefore, there is an environment that provides inputs,
and a network must learn without external intervention. By assimi-
lating the input from the environment to a description of its internal
as possible. At the end of learning process, the network has devel-
oped an ability to form internal representations of environmental
variations permitting to encode their characteristics and, therefore,
automatically create similar classes of responses [15].
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.3. Training algorithms

.3.1. Back propagation algorithm
Back propagation was created by generalizing the Widrow-Hoff

earning rule to multiple-layer networks and nonlinear differ-
ntiable transfer functions [16]. Standard back propagation is a
radient descent algorithm in which the network weights are
oved along the negative of the gradient of the performance func-

ion. The term back propagation refers to the manner in which the
radient is computed for nonlinear multilayer networks. There are a
umber of variations on the basic algorithm that are based on other
tandard optimization techniques, such as conjugate gradient and
ewton methods.

There are many variations of the back propagation algorithm,
everal of which are described in this chapter. The simplest imple-
entation of back propagation learning updates the network
eights and biases in the direction in which the performance

unction decreases most rapidly, the negative of the gradient. An
teration of this algorithm can be written as follows:

k+1 = xk − ˛kgk (4)

here xk is a vector of current weights and biases, gk is the current
radient, and ˛k is the learning rate [16].

There are two different ways in which gradient descent algo-
ithm can be implemented: incremental mode and batch mode.
n incremental mode, the gradient is computed and the weights
re updated after each input is applied to the network. In other
ords the network is presented with cases from the training data

ne at a time and the weights are revised after each case in an
ttempt to minimize the error function. In batch mode, all the
nputs are applied to the network before the weights are updated
17]. Some important types of back propagation algorithms are
escribed below.

The basic back propagation algorithm adjusts the weights in the
teepest descent direction (negative of the gradient); the direction
n which the performance functions is decreasing most rapidly. It
urns out that, although the function decreases most rapidly along
he negative of the gradient, this does not necessarily produce the
astest convergence. In the conjugate gradient algorithms a search
s performed along conjugate directions, which produces generally
aster convergence than steepest descent directions [18].

The gradient method has most of the benefits of Newton’s
ethod but without the inconvenience of having to calculate and

nvert the Hessian matrix. The Hessian matrix (or simply the Hes-
ian) is the square matrix of second-order partial derivatives of
function; it describes the local curvature of a function of many

ariables [19].
Conjugate gradient algorithm discussed above requires a line

earch at each iteration. This line search is computationally expen-
ive, because it requires that the network response to all training
nputs be computed several times for each search. The scaled con-
ugate gradient algorithm (scg), developed by Moller [11], was
esigned to avoid the time-consuming line search. This algorithm
ombines the model-trust region approach, used in the Levenberg-
arquardt algorithm, described in Section 2.3.3.

.3.2. Quasi-Newton algorithm
Newton’s method is an alternative to the conjugate gradient

ethods for fast optimization. The basic step of Newton’s method
s:
k+1 = xk − A−1
k

gk (5)

here A−1
k

is the Hessian matrix (second derivatives) of the per-
ormance index at the current values of the weights and biases.
ewton’s method often converges faster than conjugate gradient
atalysis A: Chemical 331 (2010) 86–100 89

methods. Unfortunately, it is complex and expensive to compute
the Hessian matrix for feed-forward neural networks.

There is a class of algorithms that is based on Newton’s method,
but which does not require calculation of second derivatives. These
are called quasi-Newton (or secant) methods. They update an
approximate Hessian matrix at each iteration of the algorithm. The
update is computed as a function of the gradient [10,20].

2.3.3. Levenberg-Marquardt algorithm
Like the quasi-Newton methods, the Levenberg-Marquardt

algorithm was designed to approach second-order training speed
without having to compute the Hessian matrix. When the perfor-
mance function has the form of a sum of squares (as is typical in
training feed-forward networks), then the Hessian matrix can be
approximated as:

H = JTJ (6)

and the gradient can be computed as:

g = JTe (7)

where J is the Jacobian matrix that contains first derivatives of the
network errors with respect to the weights and biases, and e is
a vector of network errors. The Jacobian matrix can be computed
through a standard back propagation technique that is much less
complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to
the Hessian matrix in the following Newton-like update:

xk+1 = xk − [JTJ + �I]
−1

JTe (8)

When the scalar � is zero, this is just Newton’s method, using the
approximate Hessian matrix. When � is large, this becomes gradi-
ent descent with a small step size. Newton’s method is faster and
more accurate near an error minimum, so the aim is to shift toward
Newton’s method as quickly as possible [20].

Thus, � is decreased after each successful step (reduction in
performance function) and is increased only when a tentative step
would increase the performance function. In this way, the perfor-
mance function is always reduced at each iteration of the algorithm.

3. Optimization of a neural network

The primary objective of this chapter is to explain how to use
the training functions to train neural networks to solve specific
problems. There are generally four steps in the training process:

• Assemble the training data,
• Create the network object,
• Train the network, and
• Simulate the network response to new inputs.

This chapter discusses a general optimization process of a neural
network topology. It describes the architecture of a typical multi-
layer feed-forward network. Then the simulation and training of
the network objects will be presented.

Networks with biases, a sigmoid layer, and a linear output layer
are capable of approximating any function with a finite number of
discontinuities.

Feed-forward networks often have one or more hidden layers
of sigmoid neurons followed by an output layer of linear neurons.
Multiple layers of neurons with nonlinear transfer functions allow

the network to learn nonlinear and linear relationships between
input and output vectors. The linear output layer lets the network
produce values outside the range −1 to +1.

In order to determine the optimum number of hidden nodes, a
series of topologies are used, in which the number of nodes was
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aried from for example 2 to 20. A mathematic function such as the
ean square error (MSE) is normally used as the error function.
SE measures the performance of the network according to the

ollowing equation:

SE =
∑i=N

i=1 (yi,pred − yi,exp)2

N
(9)

here N is the number of data point, yi,pred is the network pre-
iction, yi,exp is the experimental response and i is an index of
ata.

All ANNs are trained using one appropriate algorithm such as
caled conjugate gradient, quasi-Newton, Levenberg-Marquardt
lgorithms and so on. The primary goal of training is minimizing
he error function by searching for a set of connection weights
nd biases that causes the ANN to produce outputs that are equal
r close to target values. For instance, the back propagation algo-
ithm minimizes the error function between the observed and
he predicted output in the output layer, through two phases.
n the forward phase, the external input information signals at
he input neurons are propagated forward to compute the output
nformation signal at the output neuron. In the backward phase,

odifications to the connection strengths are made based on the
asis of the difference in the predicted and observed information
ignals at the output neuron [21].

If the used transfer function in the hidden layer is sigmoid, all
amples must be normalized in the range of 0.1–0.9 [5]. So all of
he data sets (Xi) were scaled to a new value xi as follows:

i = 0.8
(

Xi − Xmin

Xmax − Xmin

)
+ 0.1 (10)

Each topology would be repeated several times to avoid random
orrelation due to the random initialization of the weights. The net-
ork performance could be stabilized after inclusion of defined
umber of nodes on the hidden layer. For instance, Salari et al.
22] have shown that based on the approximation of error function
MSE), a number of hidden neurons equal to sixteen was adopted
n a feed-forward back propagation neural network and was used
or modeling of the process studied.

.1. Test of the fitted model

In order to calculate modeling errors, all of the outputs
ould performed an inverse range scaling to return the predicted

esponses to their original scale and compared them with experi-
ental responses. Usually two lines are used to show the success

f the prediction [23,24]. The one is the perfect fit (predicted
ata = experimental data), on which all the data of an ideal model
hould lay. The other line is the line that best fits on the data of the
catter plot with equation Y = ax + b and it is obtained with regres-
ion analysis based on the minimization of the squared errors. If
here were a perfect fit (outputs exactly equal to targets), the slope
ould be 1, and the y-intercept would be 0. The third variable is the

orrelation coefficient (R-value) between the outputs and targets.
t is a measure of how well the variation in the output is explained
y the targets. If this number is equal to 1, then there is perfect
orrelation between targets and outputs.

.2. Relative importance of input variables

The ANN used provides the weights that are coefficients

etween the artificial neurons. These weights are analogous to
ynapse strengths between the axons and dendrites in real bio-
ogical neurons. Therefore, each weight decides what proportion
f the incoming signal will be transmitted into the neuron’s body
25].
atalysis A: Chemical 331 (2010) 86–100

The neural net weight matrix can be used to assess the relative
importance of the various input variables on the output variables.
Garson [26] has proposed an equation based on partitioning of
connection weights:

Ij =
∑m=Nh

m=1

((∣∣∣Wih
jm

∣∣∣/
∑Ni

k=1

∣∣Wih
km

∣∣) ×
∣∣Who

mn

∣∣)

∑k=Ni
k=1

{∑m=Nh
m=1

(∣∣Wih
km

∣∣/
∑Ni

k=1

∣∣Wih
km

∣∣) ×
∣∣Who

mn

∣∣} (11)

where Ij is the relative importance of the jth input variable on out-
put variable, Ni and Nh are the number of input and hidden-neurons,
respectively, W’s are connection weights, the superscripts ‘i’, ‘h’ and
‘o’ refer to input, hidden and output layers, respectively, and sub-
scripts ‘k’, ‘m’ and ‘n’ refer to input, hidden and output neurons,
respectively.

Kasiri et al. [24] have used this equation to evaluate the relative
importance of the input variables on color removal of the dye solu-
tion by UV/H2O2 process. The researchers have found that among
the input variables studied, initial concentration of H2O2 with a
relative importance of 48.89% appeared to be the most influential
parameter in UV/H2O2 decolorization process.

3.3. Improving generalization

One of the problems that occur during neural network training is
called “overfitting”. The error on the training set is driven to a very
small value, but when new data is presented to the network the
error is large. The network has memorized the training examples,
but it has not learned to generalize to new situations.

One method for improving network generalization is to use a
network that is just large enough to provide an adequate fit. The
larger network you use, the more complex the functions the net-
work can create. If you use a small enough network, it will not
have enough power to overfit the data. Unfortunately, it is dif-
ficult to know beforehand how large a network should be for a
specific application. There are two other methods for improving
called “regularization” and “early stopping” [12].

The first method for improving generalization is called regular-
ization. This involves modifying the performance function, which
is normally chosen to be the sum of squares of the network errors
on the training set.

Another method for improving generalization is called early
stopping. In this technique the available data is divided into three
subsets. The first subset is the training set, which is used for com-
puting the gradient and updating the network weights and biases.
The second subset is the validation set. The error on the validation
set is monitored during the training process. The validation error
normally decreases during the initial phase of training, as does the
training set error. However, when the network begins to overfit the
data, the error on the validation set typically begins to rise. When
the validation error increases for a specified number of iterations,
the training is stopped, and the weights and biases at the minimum
of the validation error are returned.

Khataee and Mirzanjani [27] have described that a good method
for preventing the overfitting is to use the validation data set peri-
odically to compute the error rate for it while the network is being
trained. The validation error decreases in the early epochs of back
propagation but after a while, it begins to increase. The point of
minimum validation error is a good indicator of the best number of
epochs for training and the weight at that stage are likely to provide

the best error rate in new data [5]. Their results indicated that the
minimum error of the validation set could be achieved in the epochs
just about 5000. After 5000 epochs the mean square error slightly
increased; therefore, 5000 has been selected as the optimum epoch
number.
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an appropriate set of experiments well distributed in the exper-
imental region (Doehlert uniform array). Contrary to a classical
treatment of the data, based on apparent rate constants modeled
by a quadratic polynomial function, neural network analysis of the
Fig. 3. Advanced ox

. ANN modeling of heterogeneous nanocatalytic processes

In recent years, advanced oxidation processes (AOPs) have
een developed as an alternative to the conventional water and
astewater treatment methods. These processes are based on the

eneration of very reactive species such as hydroxyl radicals that
ave been proposed to oxidize quickly and nonselectively a broad
ange of organic pollutants [28–32]. Different AOPs have been
chematically indicated in Fig. 3. AOPs have been developed to
egrade the nonbiodegradable contaminants of water into harm-

ess species (e.g. CO2, H2O, etc.).
Heterogeneous photocatalysis via combination of a nanocat-

lyst (e.g. TiO2 and ZnO) and UV light is considered one of the
romising AOPs for destruction of soluble organic pollutants found

n water and wastewater [30,32]. Some of the beneficial character-
stics of TiO2 nanoparticles in comparison to other photocatalysts
re high photocatalytic efficiency, physical and chemical stability,
ow cost and low toxicity [33]. Interaction of TiO2 nanoparticles

ith the photons that possess energy equal or higher to the band
ap may cause separation of conduction and valence bands (see
ig. 3). This event is known as electron–hole pair generation. For
iO2 nanoparticles, this energy can be supplied by photons with
nergy in the near ultraviolet range. This property promotes TiO2
anoparticles as a promising candidate in photocatalysis where
olar light can be used as the energy source. Indeed, when TiO2
anoparticles is illuminated with � < 390 nm light, an electron
xcites out of its energy level and consequently leaves a hole in the
alence band. As electrons are promoted from the valence band to
he conduction band, they generate electron–hole pairs (Eq. (12))
33–35]:

iO2 + h� (� < 390 nm) → e− + h+ (12)

alence band (h+) potential is positive enough to generate hydroxyl
adicals (OH�) at TiO2 surface and the conduction band (e−) poten-
ial is negative enough to reduce molecular oxygen as shown in
ig. 4.

The hydroxyl radical is a powerful oxidizing agent which may
ttack the organic matters present at or near the surface of
iO2 nanoparticles. It is capable to degrade toxic and bioresis-
ant compounds into harmless species (e.g. CO2, H2O, etc.). TiO2

anomaterials are successfully used for the photocatalytic reme-
iation of a variety of organic pollutants such as hydrocarbons
nd chlorinated hydrocarbons (e.g. CCl4, CHCl3, C2HCl3, phenols,
hlorinated phenols, surfactants, pesticides, and dyes) as well as
eduction deposition of heavy metals such as Pt4+, Pd2+, Au3+, Rh3+
n processes (AOPs).

and Cr3+ from aqueous solutions. TiO2 nanomaterials have also
been effective in the destruction of biological organisms such as
bacteria, viruses, and molds [36–40].Due to the complexity of the
reactions in the photocatalytic processes, the kinetic parameters
of the various steps involved are very difficult to determine, lead-
ing to uncertainties in the design and scale-up of chemical reactors
of industrial interest. This is caused by the complexity of solving
the equations that involve the radiant energy balance, the spatial
distribution of the absorbed radiation, mass transfer, and mech-
anisms of a photocatalytic degradation process involving radical
species. Because of these reasons, the modeling of the photocat-
alytic processed via artificial neural networks is quite appropriate.
As it was mentioned, one of the characteristics of modeling based
on ANNs is that it does not require the mathematical description
of the phenomena involved in the process. The examples of ANN
modeling of photocatalytic water and wastewater treatment pro-
cesses are summarized in Table 2.Artificial neural networks have
been used for modeling of TiO2 photocatalytic degradation of 2,4-
dihydroxybenzoic acid, chosen as a model water contaminant, as a
function of the concentrations of substrate and catalyst. The exper-
imental design methodology has been applied to the choice of
Fig. 4. Generation of photocatalytic active species at the surface of TiO2 nanoparti-
cles.
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same experimental data does not require the use of any kinetic
or phenomenological equations and allows the simulation and the
prediction of the pollutant degradation as a function of irradia-
tion time, as well as prediction of reaction rates, under varying
conditions within the experimental region [48].An artificial neural
network model has been developed to predict the photocatalytic
decolorization of C.I. Basic Red 46 solution. This dye, commonly
used as a textile dye, has been photocatalytically removed using
supported TiO2 nanoparticles irradiated by a 30 W UV-C lamp in a
batch reactor. The photocatalyst has been industrial Degussa P25
(crystallite mean size 21 nm) immobilized on glass beads by a heat
attachment method. The process of the dye decolorization in the
presence of TiO2 nanoparticles has been experimentally studied
through changing the initial dye concentration, UV light intensity
and initial pH. The influence of inorganic anions such as chloride,
sulfate, bicarbonate, carbonate and phosphate on the photocat-
alytic decolorization of the dye has been investigated. The findings
indicated that the proposed ANN model provides reasonable pre-
dictive performance (R2 = 0.96). The influence of each parameter
on the variable studied has been assessed: initial concentration
of the dye being the most significant factor, followed by the ini-
tial pH and reaction time [47].A chemometric study on the TiO2
photocatalytic degradation of nitrilotriacetic acid (NTA) in aqueous
media under UV radiation has been carried out taking into account
the multiple variables that take part in the system. To save redun-
dant number of experiments, the system has been managed under
chemometric techniques for several variables as NTA and TiO2 con-
centrations, pH and irradiation time. Multiple-way analysis of the
variance (MANOVA) has been applied to find the statistically signifi-
cant variables. An artificial neural network has been used to build an
empirical model of the system. All measurements have been driven
under experimental designs: a full-factorial design has been used
to analyze significant factors through MANOVA, and a Doehlert
design, which was modified by spatial rotation, was applied in order
to have a satisfactory number of levels for the factor time to be able
to train the ANN. The study allows the knowledge and prediction of
the behavior of the system as well as to work out kinetic parameters
and to optimize their variables. The results of kinetic parame-
ters obtained with the neural network agree with independent
experimental results [41].Toma and co-workers [43] have been
proposed an artificial neural network model to analyze the photo-
catalytic removal of nitrogen oxides over TiO2 powders. It should be
mentioned that the nitrogen oxides NOx (especially NO and NO2)
forming by cars traffic, combustion of coals and thermal power
plants participate in the formation of acid rain, greenhouse effect,
photochemical pollution and major problems on the human health.
488 experimental sets have been used to feed the ANN model. The
network input contains three neurons representing TiO2 powder
quantity (g), reaction time (min) and exposed surface (cm2). The
output pattern comprise two neurons representing the photocat-
alytic response, namely NO and NOx efficiencies. Experimental sets
are organized in training and test samples. The first category is
used to tune neuron network weights and the second category
to test the network configuration. A stopping criterion is applied
corresponding to a fixed number of training and test cycles: 2000
cycles are achieved for each network configuration after approx-
imately 1 h of computation time. The structure of the optimized
ANN model characterize by three hidden layers containing seven,
four and three neurons, respectively (see Table 2). Predicted results
are in good agreement with experimental ones (R2 = 0.9857). With
the ANN optimized structure, it is possible to quantify the effect of

each experiment variable by varying independently each of them
and collecting NO and NOx efficiencies [43].Emilio and co-workers
[49] have been also used the chemometric techniques including full
factorial and Doehlert experimental designs, multivariate analysis
by MANOVA and artificial neural networks for the photocatalytic



cular C

r
a
s
e
h
t
a
a
s
l
d
c
h
s
f
t
p
a
o
h
i
c

n
s
m
c
d

5

t
(
t
i
i

p
o
t
m

o
h
p
t
t
s
f
1
H

t
H
o
u
t

p
p
b
t
d
s

A.R. Khataee, M.B. Kasiri / Journal of Mole

eaction of ethylenediaminetetraacetic acid (EDTA) over TiO2 in
queous solution. EDTA concentration, TiO2 amount, pH of the
olution and irradiation time have been chosen to build a set of
xperiments for the analysis. Correlation plots among variables
ave been built a model for prediction the behavior of the pho-
ocatalytic system and optimizing parameters.The heterogeneous
ssisted photocatalytic degradation processes (i.e. Solar/H2O2/TiO2
nd Solar/H2O2/ZnO) of wastewater from a thermoelectric power
tation under concentrated solar light irradiation using a Fresnel
ens has been also reported [45,46]. The efficiency of photocatalytic
egradation processes has been determined from the analysis of
yanide and formate removal. The experimental kinetic constants
ave been fitted using neural networks. The ANN applied has been
olved with two neurons and using a simple exponential activation
unction and the strategy is based on a back propagation calcula-
ion. Input variables have been initial concentration of hydrogen
eroxide and photocatalyst while output data have been cyanides
nd formates degradation constant. The analysis of the relevance
f each variable with respect to the others has been reported. It
as been found that the initial concentration of hydrogen peroxide

s the most significant factor affecting the degradation kinetic rate
onstants of cyanide and formate [45].

From the above studies, it can be concluded that the artificial
eural networks can describe the behavior of the complex reaction
ystem such as photocatalytic processes in the range of experi-
ental conditions adopted. Simulation based on the ANN models

an estimate the behavior of the photocatalytic processes under
ifferent conditions.

. ANN modeling of homogeneous catalytic processes

As it was mentioned, AOPs are the alternative to the conven-
ional water and wastewater treatment methods. Hydroxyl radicals
•OH), highly reactive species generated in sufficient quantities by
hese systems, have the ability to oxidize the majority of the organ-
cs in the polluted waters [50]. As shown in chapter 4, common AOPs
nvolve heterogeneous and homogeneous photocatalysis [51,52].

Homogeneous photocatalytic processes including Fenton and
hoto-Fenton methods have been widely used for destruction of
rganics in the polluted waters. In this section, a brief mechanis-
ic description of these techniques as well as the results of ANN

odeling will be presented.
In 1876, Fenton’s pioneering work pointed out the possible use

f a mixture of H2O2 and Fe2+ to destroy tartaric acid. Most people,
owever, consider that Fenton’s chemistry began in 1894 when he
ublished a deeper study on the strong promotion of the oxida-
ion of this acid with such a reagent. During the period 1901–1928,
he stoichiometry of the reaction between H2O2 and Fe2+ has been
tudied. The extraordinary practical usefulness of Fenton’s reagent
or the oxidation of organic compounds was first assumed in the
930s as a radical mechanism for the catalytic decomposition of
2O2 by iron salts [53].

Fenton’s reagent (Fe2+/H2O2) is known to have different
reatment functions, as mentioned earlier, depending on the
2O2/FeSO4 ratio. When the amount of Fe2+ employed exceeds that
f H2O2, the treatment tends to have the effect of chemical coag-
lation. When the two amounts are reversed, the treatment tends
o have the effect of chemical oxidation.

The wastewater treatment applying Fenton and photo-Fenton
rocesses is, in general, quite complex. This is caused by the com-

lexity of solving the equations that involve the radiant energy
alance, the spatial distribution of the absorbed radiation, mass
ransfer, and the mechanisms of a photochemical or photocatalytic
egradation involving radical species. Since the process depends on
everal factors, modeling of these processes involves many prob-
atalysis A: Chemical 331 (2010) 86–100 93

lems. It is evident that these problems cannot be solved by simple
linear multivariate correlation. Artificial neural networks are now
commonly used in many areas of chemistry and they represent a
set of methods that may be useful in solving such problems (see
Table 3) [7,8,54–56].

Elmolla et al. [57] have used neural network modeling to pre-
dict the performance of Fenton process for removal of antibiotics
(amoxicillin, ampicillin and cloxacillin). The configuration of the
back propagation neural network giving the smallest MSE was
three layers ANN with tangent sigmoid transfer function (tansig)
at hidden layer with 14 neurons, linear transfer function (purelin)
at output layer and Levenberg–Marquardt back propagation train-
ing algorithm (LMA). ANN predicted results were very close to the
experimental results with correlation coefficient (R2) of 0.997 and
MSE 0.000376.

Yu et al. [58] have also developed a novel Fenton process con-
trol strategy using ANN models and oxygen-reduction potential
(ORP) monitoring to treat two synthetic textile wastewaters con-
taining two common dyes namely Reactive Blue 49 (RB49) and
Reactive Brilliant Blue (RBB). Experimental results indicate that the
ANN models can predict precisely the color and chemical oxygen
demand (COD) removal efficiencies for synthetic textile wastewa-
ters with correlation coefficients of 0.91–0.99.

When UV irradiation is combined with some powerful oxi-
dant, such as H2O2, organic dye degradation efficiency can be
significantly enhanced due to hydroxyl radical generation caused
by the photolysis of H2O2 (Eq. (16)), and these highly reactive
non–selective radicals may further react with the organic substrate
[59]. This process demonstrated high efficiency in the treatment
of different types of organic dyes [60–63]. The efficiency of Fen-
ton process could be significantly increased under light irradiation,
where Fe3+ ions are constantly reduced to the Fe2+, (Eq. (13)), [64]
and the Fenton process is improved by the participation of photo-
generated Fe2+:

Fe3+ + H2O + h� → Fe2+ + OH• + H+ (13)

ANN modeling of photo-Fenton processes is the subject of numer-
ous papers (see Table 3). Durán et al. [65] have developed a three
layers (4:4:2) feed-forward network to predict degradation rate
constant of cyanides and formates under UV/Fe(II)/H2O2 process
in a integrated gasification combined cycle (IGCC) power station
effluent. In a similar work, they have used a two layers network
to evaluate the efficiency of photo-Fenton process [66]. The net-
work has been trained by a marquardt non-linear fitting algorithm
to simulate the output parameters: decolorization and mineraliza-
tion rate constants. Simulation from ANNs equations has proved
that the initial concentration of hydrogen peroxide in aqueous dye
solutions is the main parameter affecting the photo-decolorization
kinetics (see Table 3).

Gob et al. [54] have studied photo-Fenton removal of 2,4-
dimethyl aniline (2,4-xylidine) from contaminated water. A three
layers (3:8:1) feed-forward back propagation network has been
developed and trained using 50,000 data sets. Comparison made
between predicted and experimental output values (R2 = 0.995)
show that ANN is a successful technique to predict 2,4-xylidine
concentration in the treated solution (see Table 3).

Treatment of saline wastewater contaminated with hydrocar-
bons by the photo-Fenton process has been the subject of another
ANN modeling. In this work, Moraes et al. [8] have followed TOC
content of the treated wastewater using a three layer (5:2:1) feed-

forward back propagation network. Totally 1000 data sets have
been used for training the network. There has been a good agree-
ment between experimental and predicted output values with high
correlation coefficients of 0.950 and 0.965 for learning and test sets,
respectively.
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Table 3
ANN modeling of Fenton and photo–Fenton water and wastewater treatment processes.

Treatment Process Treatment target ANN architecture Training function Layers
no.

ANN
topology

Data
no.

Input Output Epochs no. Refs.

Photo–Fenton Saline solutions
containing raw
gasoline

Feed–forward back
propagation

– 3 5:2:1 – Reaction time, [TOC]0,
[Fe(II)]0, [H2O2]0,
[NaCl]0

*[TOC] 1000 [8]

UV/Fe–ZSM5/H2O2 Acid Red 14 Feed–forward back
propagation

Scaled conjugate
gradient algorithm

3 4:10:1 25 [Dye]0, [H2O2]0, Initial
pH, [Catalyst]0,

Degradation (%) – [24]

Photo–Fenton Reactive Blue 4 Feed–forward back
propagation

Marquardt non–linear
fitting algorithm

3 4:2:1 19 [H2O2]0, pH, [TiO2]0,
[Fe(II)]0

Decolorization kinetic
constant

– [74]

Photo–Fenton Imipramine Feed–forward back
propagation

Conjugate gradient
descent

3 3:3:1 – [H2O2]0, [Fe(II)]0,
[TiO2]0

Imipramine
degradation (%)

95 [42]

Photo–Fenton 2,4–dimethyl aniline Feed–forward back
propagation

– 3 3:8:1 – [Fe(II)]0, [H2O2],
Reaction time

*[Xyl] 50000 [54]

Fenton Antibiotics
(amoxicillin, ampicillin
and cloxacillin)

Feed–forward back
propagation

Levenberg–Marquardt 3 5:14:1 120 Reaction time,
H2O2/COD molar ratio,
H2O2/Fe(II) molar ratio,
pH, [Antibiotics]0

*COD removal (%) – [57]

Fenton Reactive Brilliant Blue,
Reactive Blue 49

– – – – – [Fe(II)]0, [H2O2]0 COD removal, Effluent
color removal

– [58]

UV/Fe(II)/H2O2 Integrated Gasification
Combined Cycle (IGCC)
power station effluent

Feed–forward back
propagation

– 3 4:2:2 – [Fe(II)]0, [H2O2]0, pH,
Temperature

Degradation rate
constant of cyanides
and formates

– [65]

Photo–Fenton Reactive Blue 4 (RB4) Marquardt non–linear
fitting algorithm

– 2 5:2 – [RB4]0, [Fe(II)]0,
[H2O2]0, pH,
Temperature

Decolorization and
mineralization rate
constant

– [66]

Ferrioxalate–assisted
photo–Fenton

Orange II Feed–forward back
propagation

Marquardt non–linear
fitting algorithm

3 7:2:2 – H2O2 Flow, [Fe(II)]0,
pH, [H2C2O4]0,
Temperature Solar
power, UV Dosage

Decolorization and
mineralization kinetic
rate constants

– [67]

Photo–Fenton Polyvinyl alcohol (PVA) Feed–forward back
propagation

– 3 4:8:1 432 Reaction time, [DOC]0,
[Fe(II)]0, [H2O2]

[PVA] 10000 [68]

Solar driven photo–Fenton Phenol Feed–forward back
propagation

– 3 5:6:1 – [DOC]0,[Fe(II)]0, H2O2

feed rate, Accumulated
radiant energy,
Irradiation time

*[DOC] 10000 [70]

Solar photo–Fenton Reactive Blue 4 (RB4) Feed–forward back
propagation

Marquardt non–linear
fitting algorithm

3 5:2:1 – pH, [Fe(II)]0, [H2O2]0,
[RB4]0, Temperature

Decolorization rate
pseudo constant

– [75]

Solar
photo–Fenton–ferrioxalate

6:2:1 [Oxalic acid]0

Solar photo–Fenton Orange II – – 3 5:2:1 – pH, [FeSO4]0, [H2O2]0,
[Orange II]0,
Temperature

Decolorization kinetic
rate constant

– [76]

Solar
photo–Fenton–ferrioxalate

4:2:1 [FeSO4]0, H2O2]0,
Temperature, [Oxalic
acid]0

Ferrioxalate–assisted solar
photo–Fenton

Orange II – – 3 7:2:2 50 pH, [Fe(II)]0, H2O2 flow,
Temperature,
[H2C2O4]0, Solar
power, Air flow

Decolorization and
mineralization kinetic
rate constants

– [77]

TOC: Total Organic Carbon, Xyl: 2,4- dimethyl aniline, COD: Chemical Oxygen Demand. DOC: Dissolved Organic Carbon.
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Monteagudo et al. [67] have also developed a neural network
for modeling of ferrioxalate-assisted solar photo-Fenton degra-
dation of Orange II aqueous solutions. The three layers (7:2:2)
feed-forward back propagation network has been trained using
Marquardt non-linear fitting algorithm which can predict the
decolorization kinetic rate constant chosen as the output variable.
They have reported that experimental results and ANNs fittings of
the process are in good agreement with an average error lower than
16% for dye decolorization.

Calza et al. [42] have developed a neural network to predict the
performance of a photo-Fenton process for removal of imipramine
from the contaminated water. The three layers network (3:3:1)
has been trained with conjugate gradient descent algorithm during
95 epochs. The linear regression between the network prediction
and the corresponding experimental data prove that modeling of
photo-Fenton removal of imipramine using artificial neuron net-
work is a satisfactory method. Modeling photo-Fenton removal of
Reactive Blue 4 is another example of the application of neural
network technique. Duran et al. [44] have developed a three lay-
ers (4:2:1) feed-forward neural network using back propagation
algorithm. Totally 19 data sets and marquardt non-linear fitting
algorithm have been used for training the network that is suc-
cessfully enabled to predict the output variable, i.e. decolorization
kinetic constant.

Giroto and co-workers [68] have also developed a neural net-
work to predict polyvinyl alcohol abatement in aqueous solution
by photo-Fenton process. A three layers (4:8:1) feed-forward back
propagation network has been trained using 432 data sets and
during 10,000 epochs to predict polyvinyl alcohol concentration
at the end of photo-Fenton process. High correlation coefficient
(R2 = 0.996) between experimental and predicted values of the out-
put variable shows the success of the modeling.

Nogueira et al. [69] have also developed a neural network for
modeling the performance of a solar driven photo-Fenton process
used for removal of phenol from the effluents. In this work, dis-
solved organic carbon (DOC) content of the treated solution has
been chosen as the output variable and a three layers (5:6:1) feed-
forward back propagation neural network has been trained during
10,000 epochs.

Homogeneous photo-Fenton has some disadvantages such as (i)
the tight range of pH in which the reaction proceeds, (ii) the need
for recovering the precipitated catalyst after the treatment and (iii)
deactivation by some ion complexing agents like phosphate anions
[70]. An alternative method could be the use of heterogeneous solid
Fenton nanocatalysts, such as transition metals containing zeolites,
clays, bentonits and so on [198–200]. The use of synthetic zeolites is
very promising due to their unique properties such as micro-porous
structure, high surface area and ion exchange capacity, which could
give them advantage over other carriers [71–73].

Kasiri et al. [24] have studied photo-Fenton process using Fe-
ZSM5 zeolite as heterogeneous nanocatalyst for removal of Acid
Red 14 from the contaminated water. They have used an artifi-
cial neural network for modeling of the process. The three layers
(4:10:1) network has been trained using scaled conjugate gradi-
ent algorithm and the degradation efficiency of the process has
been chosen as the output variable. Modeling results show a good
agreement between experimental and predicted results with a high
correlation coefficient (R2 = 0.996). The results of modeling confirm
that neural network modeling could effectively reproduce experi-
mental data and predict the behavior of the process.
6. ANN modeling of UV/peroxide processes

Hydrogen peroxide (H2O2) is a strong oxidant (standard poten-
tial 1.80 and 0.87 V at pH 0 and 14, respectively) [78] and its
application in the treatment of various inorganic and organic pol-
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Table 5
ANN modeling of electrochemical water and wastewater treatment processes.

Treatment Process Treatment target ANN architecture Training function Layers
No.

ANN
topology

Data
no.

Input Output Epochs no. Refs.

Peroxi-coagulation C.I. Basic blue 3,
Malachite green, C.I.
Basic red 46, C.I. Basic
yellow 2

Feed-forward back
propagation

trainscg 3 4:14:1 60 Electrolysis time, Initial
pH, Applied current,
[Dye]0

Decolorization (%) – [9]

Peroxi-coagulation C.I. Basic yellow 2 Feed-forward back
propagation

trainscg 3 4:16:1 117 Electrolysis Time,
Initial pH, Applied
current, [Dye]0

Decolorization (%) – [22]

Electrochemical
oxidation

Real wastewater
(Wastewater of
Specialty Chemical
Industry)

Feed-forward back
propagation

Levenberg–Marquart 3 3:5:1 124 Current density,
Electrolysis duration,
Supporting electrolyte
concentration

COD removal (%) – [94]

3:7:1
3:9:1

4 3:3:3:1
3:3:5:1
3:3:7:1

3 7:10:1 49 Current density,
Electrolysis Time,
Initial pH, [Dye]0,
Conductivity,
Retention time,
Inter-electrodes
distance

Decolorization (%) – [95]

Electrocoagulation Cr(IV) Feed-forward back
propagation

– 3 4:10:1 212 Current density, Time
of electrolysis,
[Cr(VI)]0,
Concentration of
electrolyte

[Cr(VI)]t – [99]

Electrocoagulation Acid blue 113 Feed-forward back
propagation

trainlm 5 4:10:10:10:1 144 Effluent concentration,
Electrolyte pH, Current
density, Electrolysis
time

COD removal (%) – [100]

Electrolysis Phenolic compounds
(phenol,
4-chlorophenol,
2,4-dichlorophenol,
2,4,6-trichlorophenol,
4-nitrophenol and
2,4-dinitrophenol)

Feed-forward back
propagation

Different functions 4 7:30:25:1 420 Temperature, [COD]0,
pH, Current density,
Current charge passed,
Types of chlorine
phenol compound,
Type of nitrophenols
compounds

COD removal (%) – [111]

7:25:20:1

Electrodialysis Pb2+ Multilayer
perceptron

Levenberg–Marquardt 4 4:5:4:1 81 [Pb2+]0 Temperature,
Flow rate, Voltage

[Pb2+] – [112]

Coagulation Drinking water Self organizing map – 4 7:8:0:3 202 Turbidity, Color,
Absorption 254,
Residual aluminum,
pH, Alum dose, DOC

Turbidity, Color,
Absorption 254 nm,
Residual aluminum

– [113]

10:8:0:2
9:8:8:1
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utants is well established. Numerous applications of H2O2 in the
emoval of pollutants from wastewater, such as sulfites, hypochlo-
ites, nitrites, cyanides, and chlorine have been reported [79].

Oxidation by H2O2 alone is not effective for high concentrations
f certain refractory contaminants, such as highly chlorinated aro-
atic compounds and inorganic compounds, because of low rates

f reaction at reasonable H2O2 concentrations. Transition metal
alts (e.g. iron salts), ozone and UV–light can activate H2O2 to form
ydroxyl radicals (Eqs. (14)–(16)) which are strong oxidants:

Ozone and hydrogen peroxide

O3 + H2O2 → OH• + O2 + HO2 (14)

Iron salts and hydrogen peroxide [80]

Fe2+ + H2O2 → Fe3+ + OH• + OH− k1 ≈ 70 M−1 s−1 (15)

UV-light and hydrogen peroxide

H2O2 + UVC → 2OH• (16)

The principle behind the beneficial effects observed using ultra-
iolet light in combination with hydrogen peroxide or ozone as
ompared to the individual application, lies in the fact that the
ate of generation of free radicals is significantly enhanced in the
ase of combination technique, which is very similar to ultrasoundy
2O2 or ultrasoundy O3 processes. Only difference being the energy

equired for the generation of free radicals from dissociation of
zone or hydrogen peroxide is given by the UV light as against
avitating bubbles in the case of ultrasound [81,82].

It is widely accepted that the first step in the UV/H2O2 process
s the attack of the photon against the hydrogen peroxide molecule
nd the subsequent formation of hydroxyl radical (OH•) (Eq. (16))
83].

High concentrations of H2O2 do not necessarily favor the kinet-
cs of the reaction, for after the reaction starts, the steps of
ropagation can be prevented by the excess of hydrogen peroxide.
his excess can act as a hydroxyl radical self-consumer (Eq. (17))
84].

H• + H2O2 → H2O + HO2
• (17)

This scavenging effect of hydroxyl radical produces the
ydroperoxy radical, less reactive than the hydroxyl radical. Thus,
ydrogen peroxide in excess may react with the hydroxyl radical
nd compete with the attack of this radical to the organic matters
n the solution during the photolysis [85].

The kinetics of UV/H2O2 process is favored up to H2O2 addition
ritical point. The critical point is related to various factors such as
he amount of hydrogen peroxide added, reaction media pH, UV
adiation wavelength, concentration of organic matters and struc-
ural characteristics, besides other specific factors like the presence
f inorganic salts, which affect the reaction performance of the
ydroxyl radical [86].

Wastewater treatment by applying photooxidative processes is,
n general, quite complex. The mathematical equations describing
he performance of theses processes involve the radiant energy
alance, the spatial distribution of the absorbed radiation, mass
ransfer, and the mechanisms involving radical species. It is clear
hat such a complex problem cannot be solved by simple linear

ultivariate correlation. Artificial neural networks are very use-
ul to solve this problem as they do not require the mathematical
escription of the phenomena involved in the process [23,87,88].

o, there are numerous papers regarding ANN modeling of these
rocesses (see Table 4).

Aleboyeh et al. [23] have developed an artificial neural net-
ork to predict the performance of a UV/H2O2 removal of Acid
range 7 from the aqueous solution. The network has been trained
atalysis A: Chemical 331 (2010) 86–100 97

using totally 228 data sets divided into training, validation and
test subsets, each of them containing 114, 57 and 57 data sets,
respectively. A three layers network (4:8:1) has been optimized
to predict the decolorization efficiency of UV/H2O2 process. The
comparison between experimental values and predicted output
variables using the adopted neural network model show that this
network predicts the output variable with a high correlation coef-
ficient (R2 = 0.996). The results of modeling confirm that neural
network modeling could effectively reproduce experimental data
and predict the behavior of the process.

Salari and co-workers [89] have used ANN technique for mod-
eling of MTBE removal by UV/H2O2 process. Totally 64 data sets
have been used for training, validation and test of the model. The
configuration of the back propagation neural network giving the
smallest MSE has been a three layers ANN with tangent sigmoid
transfer function (tansig) at hidden layer with 8 neurons, linear
transfer function (purelin) at output layer trained with scaled con-
jugate gradient algorithm. ANN predicted results are very close to
the experimental ones with correlation coefficient of 0.998. The
ANN model can then describe the behavior of the complex reaction
system with the range of experimental conditions adopted.

Modeling of UV/H2O2 removal of Reactive Red 120 has been
also studied by Slokar et al. [25]. A four layers (7:8:8:4) neu-
ral network has been developed during 200 epochs on the basis
of counter-propagation learning strategy and Kohonen algorithm.
This optimized network can effectively predict the output vari-
ables including absorbance, chemical oxygen demand, total organic
carbon and total inorganic carbon of the dye solution (see Table 4).

Guimaraes and Silva have established a hybrid neural model
for decolorization of azo dyes by UV/H2O2 involving the study of
process variables and structural parameters [90]. Decolorization
degree of the studied dyes including Direct Red 28, Acid Brown
75, Acid Orange 52 and Orange 10 has been chosen as the output
variable. The network has been trained by Levenberg–Marquardt
algorithm during 34 epochs and consequently, a three layers
(7:18:1) neural network is optimized for modeling of UV/H2O2
process. The neural model provided optimum estimates for the
decolorization based on the absorbance measurement as an output
variable, with correlation coefficients above 0.96 for the training,
validation and test sets, indicating the optimum model generaliza-
tion capacity.

As a conclusion, artificial neural networks can successfully
describe the performance of the photooxidative processes in the
range of the variables studied, in spite of the complexity involved
such processes.

7. ANN modeling of electrochemical treatment processes

Electrochemical technologies can be applied for the treatment
of effluents released from a wide range of industries or processes.
These techniques have been receiving greater attention in recent
years due to their distinctive advantages such as environmen-
tal compatibility (the main reactant is the electron which is a
clean reagent), and versatility (a plethora of reactors and electrode
materials, shapes, and configurations can be utilized). It is note-
worthy that the same reactor can be used frequently for different
electrochemical reactions with only minor changes and also the
electrolytic processes can be scaled easily from the laboratory to the
plant, allowing treatment volumes ranging from milliliters to mil-
lions of liters. Electrochemical methods are generally safe because

of the mild conditions and innocuous nature of the chemicals usu-
ally employed. Electrodes and cells can be designed to minimize
power losses due to poor current distribution and voltage drops
and making the processes more competitive in energy consumption
than the conventional techniques [93].



9 cular C

o
(

m
l
d
T
f
b
t
o

p
r

d
w
r
w
p
d

c
t
d
r
A
c

b
c
n
t
t
r
e
c
g
C

w
r
t
m
i

p
t
r
s

M

w
M

g
w
o
r
p

O

8 A.R. Khataee, M.B. Kasiri / Journal of Mole

Artificial neural networks have been widely used for modeling
f electrochemical methods of water and wastewater treatment
see Table 5).

For example, Basha et al. [94] have applied ANN method for
odeling the electrochemical degradation in batch, batch recircu-

ation and continuous recycle modes in managing the wastewater
ischarged by a typical medium-scale specialty chemical industry.
hey have developed three and four layers back propagation feed-
orward nets trained with Levenberg-Marquardt algorithm. It has
een reported that single hidden layer feed-forward back propaga-
ion neural network is adequate enough to predict the performance
f the process.

Daneshvar et al. [95] have used a three layer feed-forward back
ropagation neural network for modeling the electrocoagulation
emoval of C.I. Basic Yellow 28.

Electrocoagulation (EC) as an electrochemical method has been
eveloped to overcome the drawbacks of conventional water and
astewater treatment technologies. EC process provides a simple,

eliable and cost-effective method for the treatment of wastewater
ithout any need for additional chemicals, and thus the secondary
ollution. It also reduces the amount of sludge, which needs to be
isposed [96–98].

Daneshvar and co-workers have reported that ANN modeling
ould be successfully used to investigate the cause effect rela-
ionship in electrocoagulation process [95]. The ANN model could
escribe the behavior of the complex reaction system with the
ange of experimental conditions adopted. Simulation based on the
NN model can estimate the behavior of the system under different
onditions.

Aber et al. [99] have also developed a three layer feed-forward
ack propagation neural network for modeling of the electro-
oagulation removal of Cr(VI) from the polluted solutions. The
etwork was developed with sigmoidal transfer function as a
ransfer function in the hidden and output layers. 212 experimen-
al sets have been used to develop the ANN model. The linear
egression between the network prediction and the corresponding
xperimental data (R2 = 0.976) proves that modeling of the electro-
oagulation removal of Cr(VI) using artificial neural network is a
ood and precise method to predict the residual concentration of
r(VI) under different conditions.

A five layer (4:10:10:10:1) back propagation feed-forward net-
ork has been also developed to predict the electrocoagulation

emoval of Acid Blue 113. The training function was trainlm and
otally 144 experimental sets have been used to develop the ANN

odel. The authors have reported that ANN model predictions sat-
sfactorily match with experimental observation [100].

One of the most popular electrochemical advanced oxidation
rocess (EAOP) is anodic oxidation (AO) consisting in the destruc-
ion of organics in an electrolytic cell under the action of hydroxyl
adical formed as intermediate from water oxidation to O2 at the
urface of a high O2-overvoltage anode:

+ H2O → M(OH•) + H+ + e− (18)

here M(OH•) denotes the hydroxyl radical adsorbed on the anode
or remaining near its surface [101].
More potent indirect electro-oxidation methods with hydro-

en peroxide electrogeneration are being also developed for
astewater remediation. In these techniques, H2O2 is continu-

usly supplied to the contaminated solution from the two-electron

eduction of O2 usually at carbon-felt [102–107] and carbon-
olytetrafluoroethylene O2-diffusion [74,108] cathodes:

2(g) + 2H+ + 2e− → H2O2 (19)
atalysis A: Chemical 331 (2010) 86–100

The electro-Fenton process performs when Fe2+ is added to the
solution.

Fe2+ + H2O2 + H+ → Fe3+ + OH• + H2O (20)

The peroxi-coagulation process is performed with a sacrificial
Fe anode, which continuously supplies soluble Fe2+ to the solution
from the following anodic oxidation reaction [109]:

Fe → Fe2+ + 2e− (21)

Fe2+ thus produced is quickly oxidized by electrogenerated
H2O2 from reaction (21) yielding a solution saturated with Fe3+,
whereas the excess of this ion precipitates as hydrated Fe(III) oxide
(Fe(OH)3).

Fe2+ + H2O2 → Fe(OH)2+ + OH• (22)

Then, pollutants can be removed by the combined action of their
degradation with OH• generated from reaction (22) and their coag-
ulation with the Fe(OH)3 precipitate formed.

Peroxi-coagulation differs from classical electrocoagulation
with a Fe anode and a graphite cathode, since electrocoagulation
does not degrade soluble organics because no significant H2O2 is
produced in the medium, such as previously found for aniline and
4-chlorophenol [109,110].

Salari et al. [22] have developed a feed-forward back propaga-
tion neural network for modeling of peroxi-coagulation removal of
C.I. Basic Yellow 2. The network is developed with sigmoidal trans-
fer function as a transfer function in the hidden and output layers.
The three layer network was trained with scaled conjugate gradient
algorithm using totally 117 data sets. The linear regression between
the network prediction and the corresponding experimental data
(R2 = 0.9713) proves that modeling the peroxi-coagulation removal
of BY2 using artificial neuron network is a satisfactory method. The
authors have concluded that artificial neural network modeling has
been successfully used to investigate the cause effect relationship
in peroxi-coagulation process.

In a similar work, Zarei et al. [9] have used neural network mod-
eling to predict the performance of a peroxi-coagulation removal
of four dyes namely Basic Blue 3, Malachite Green, Basic Red 46
and Basic Yellow 2 using carbon nanotube-PTFE cathode. They
have used 60 data sets to develop a three layer (4:14:1) feed-
forward network to predict the decolorization efficiency of the
process as the output of the neural network. The linear regres-
sion between the network prediction and the corresponding
experimental data (R2 = 0.989) show that ANN modeling the peroxi-
coagulation removal of Basic Yellow 2 as a model dye is a precious
method.

Neural networks have also been developed to model the elec-
trolysis of wastes polluted with phenolic compounds, including
phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol,
4-nitrophenol and 2,4-dinitrophenol [111]. In this work, Piuleac
and co-workers have proposed feed-forward four layers networks
(7:30:25:1 and 7:25:20:1) using different training algorithms to
predict COD content of the treated solutions.

Sadrzadeh et al. [112] have developed a neural network to
predict the separation of lead ions from wastewater using elec-
trodialysis method. In this work, 81 data sets were used to train a
multilayer perceptron network using Levenberg-Marquardt algo-
rithm. The developed four layers network (4:5:4:1) can effectively
predict lead ions concentration in the treated solution. The authors
have reported that ANN modeling technique have many favorable

features such as efficiency, generalization and simplicity, which
make it an attractive choice for modeling of complex systems, such
as wastewater treatment processes.

It can be concluded that artificial neural networks are capable
to simulate the complex relationships existing between input and
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utput process variables in electrochemical methods. ANNs can
vercome the difficulty of modeling such processes where different
henomena such as mass and heat transfers and mechanic fluids
re involved to run the overall process.

. Conclusions

Artificial neural networks have been widely used in model-
ng and simulation of homogeneous and heterogeneous water and

astewater treatment processes. Catalytic treatment processes
re, in general, quite complex. This is caused by the complexity of
olving the equations that involve the radiant energy balance, the
patial distribution of the absorbed radiation, mass transfer, and
he mechanisms of a photochemical or photocatalytic degradation
nvolving radical species. This paper confirms that ANN model-
ng is an effective and simple approach to successfully describe
he behavior of these complex processes, in which manipulated
perational variables show a combined effect, within the range of
xperimental conditions investigated. ANNs are capable to simu-
ate the complex relationships existing between input and output
rocess variables in different homogeneous and heterogeneous
ater and wastewater treatment processes.

As an effective tool to evaluate the success of ANN modeling,
relationship between the predicted results of the designed ANN
odel and experimental data has been normally conducted. The

igh correlation coefficient (R2) between the network prediction
nd the corresponding experimental data proves that modeling
hese nanocatalytic processes using artificial neuron network is

satisfactory method. This technique might therefore be useful
n homogeneous and heterogeneous processes modeling, as well
s in the design, scale-up and industrial application of water and
astewater treatment processes.
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